3D Topology of the Magnetic Field in the Solar Corona

Daniel Lee Dr. Daniel Brown Dr. Chris Powles

Introduction

1. The Sun

2. Magnetic Topology

3. Case Studies

4. Future Work

Height (km)

Earth Scale

Photosphere

- •Activity dominated by B-field
- •B-field has foot points in photosphere
- •Variety of magnetic properties
 - Granulation
 - Super Granular Cells
 - Ephemeral Regions
 - Active Regions

(hv)

2. Magnetic Topology

4. Future Work

Corona

•Two solar flares

- X-5.4
- X-1.2

•Post-flare, field lines change connectivity

2012-03-07T00:00:00.35

2D Reconnection

- •Well understood
- •Restricted, can only occur at X-Type null
- •When two flux tubes reconnect
 - they break at X-point
 - reform to form two new flux tubes
- •2D properties don't transfer to 3D

3D Reconnection

- •Ongoing field of research
- •Not restricted to X-Type nulls
 - Occurs at various topological features
- •Flux tubes don't reform perfectly
- •Releases stored magnetic energy
 - Heat, light and particle acceleration

Potential Field - Source Surface Model

- •Simplest, useful model
- •Best model for structural simulations
- •Assumes **j**=**0**
- •Treat photosphere as z=0 plane
- •Scatter sources of flux on the plane

$$\boldsymbol{B}(\boldsymbol{r}) = \sum_{i} \epsilon_{i} \frac{\boldsymbol{r} - \boldsymbol{r}_{i}}{|\boldsymbol{r} - \boldsymbol{r}_{i}|^{3}}$$

Skeleton

3 Source cases

- •Brown and Priest (1999)
- •Various topological structures
- •Building blocks for complex cases

Coronal Nulls

•Null points not restricted to plane

•Flares occur in corona

• Hence want reconnection sites in corona

Bifurcations

•Consider a system depending on λ ,

 $\dot{x} = f(x, \lambda)$

•Nature of solution can change dramatically at critical values of $\boldsymbol{\lambda}$

•This is called a bifurcation point

•Bifurcations fall in two categories;

- Local Changes in the solutions of the null points
- Global Changes the dynamics of the system

•Dynamics refers to behaviour of field lines and their connectivity

Bifurcations

Potential Fie

8 Source Topology

- Seven separatrix walls
- One coronal null point
- One coronal dome
- 8 internal regions of connectivity

• Seven separators

4. Future Work

Turning Point Bifurcation

- Seven separatrix walls
- Three coronal null points
- Two coronal domes
- 8 internal regions of connectivity

• Nine separators

1. The Sun

4. Future Work

Pitchfork Bifurcation

- Five separatrix walls
- No coronal null points
- Two domes
- 8 internal regions of connectivity

• Six separators

2. Magnetic Topology

Emerging a

- •Previous case was artificial
- •Simulate more realistic cell
- •Emerge a bipole
- •Vary boundary sources progressively

Emerging a Bipole

Future Work

•Begin simulations using continuous sources

- •Draw comparisons between the point source simulations and continuous source simulations
 - Do we see similar behaviour between the two types
 - Do point source simulations approximate continuous source simulations well
- •Observational work creating continuous source simulations based on magnetogram images