Potential Magnetic Fields: Null-like Points and Squashing Factors

Daniel Lee Daniel Brown

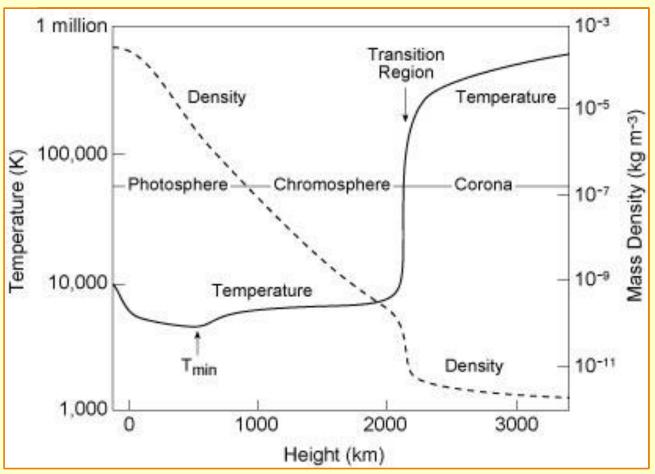
Solar Structure

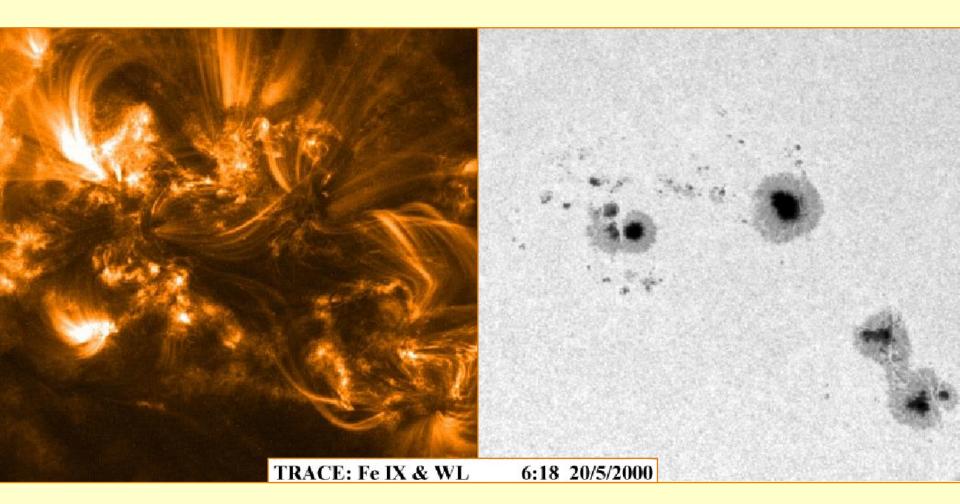
•Photosphere

- 5,800k , 10⁻⁹g/cm³
- Chromosphere
 - 40,000k , 10⁻
 ¹²g/cm³
- Transition Region

Corona

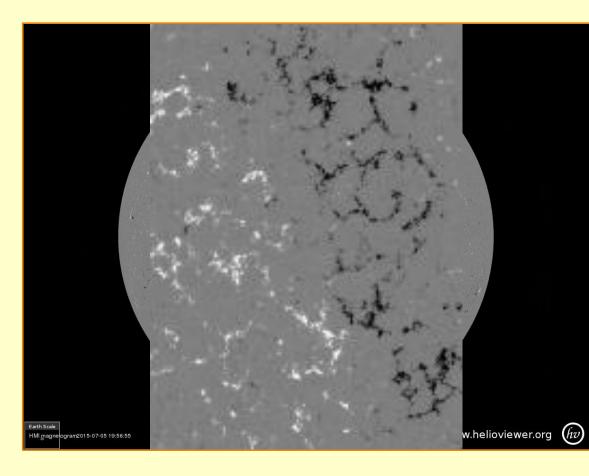
3,000,000k , 10⁻¹⁶g/cm³





Photosphere

- Activity dominated by Bfield
- B-field has foot points in photosphere
- Variety of magnetic properties
 - Granulation
 - Super Granular Cells
 - Ephemeral Regions
 - Active Regions

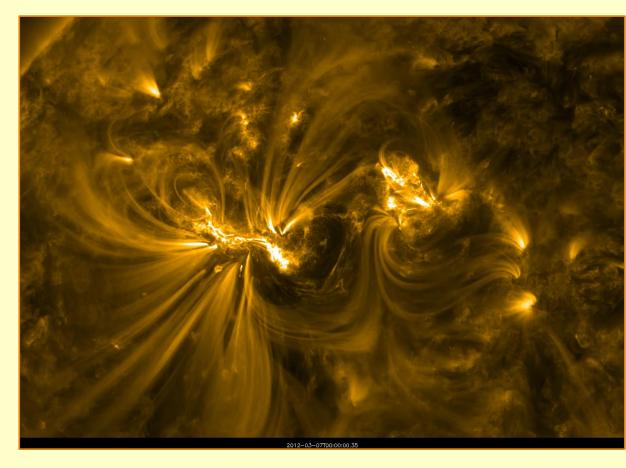


<u>Corona</u>

•Two solar flares

- X-5.4
- X-1.2

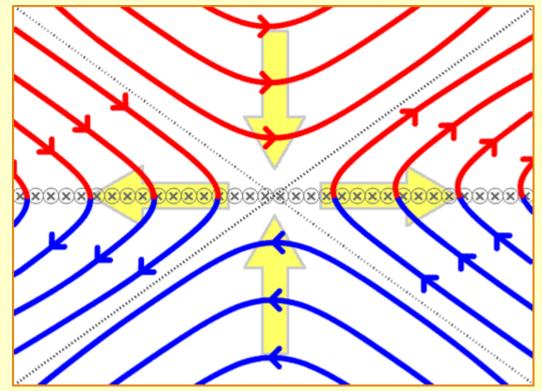
Post-flare, field lines change connectivity



2D Reconnection

- Well understood
- Restricted, can only occur at X-Type null
- •Two flux tubes reconnect
 - break at X-point
 - reform as two new flux tubes

•2D properties don't transfer to 3D



3D Reconnection

•Ongoing field of research

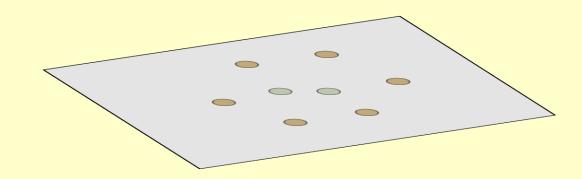
Not restricted to X-Type nulls
Occurs at various topological features

Flux tubes don't reform perfectly

Releases stored magnetic energy
Heat, light and particle acceleration

Magnetic Charge Topology

- Simplest, useful model
- Best model for structural simulations
- Assumes <u>j=0</u>, potential
- Treat photosphere as z=0 plane
- Scatter sources of flux on plane



$$\boldsymbol{B}(\boldsymbol{r}) = \sum_{i} \epsilon_{i} \frac{\boldsymbol{r} - \boldsymbol{r}_{i}}{|\boldsymbol{r} - \boldsymbol{r}_{i}|^{3}}$$

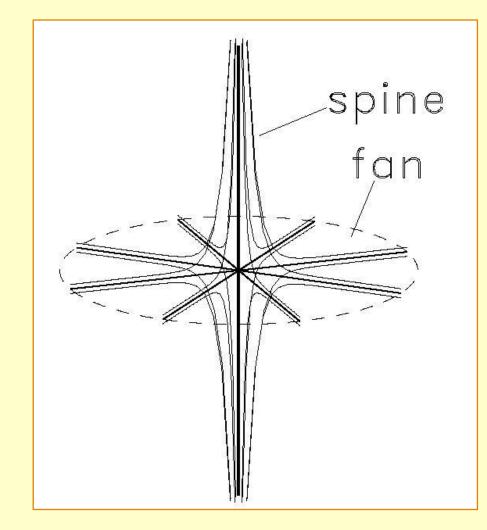
Magnetic Null Points

•We can define null points •Locations where $B_x = B_y = B_z = 0$ •Anywhere in the volume

•Can define spine and fan field lines about a null

•Separatrix surfaces generated from these points

 Intersections in surfaces form separator field lines



<u>3 Source Cases</u>

Separatrix Wall S_ Separator Ν S Separatrix Dome

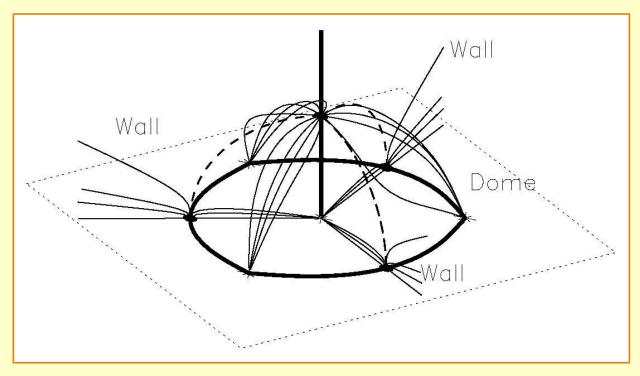
•Brown and Priest (1999)

 Various topological structures

•Building blocks for complex cases

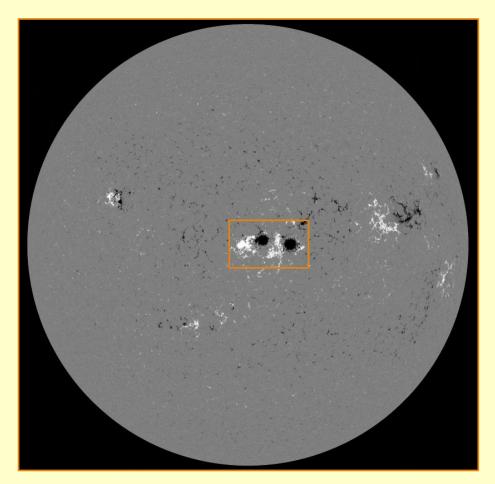
Coronal Nulls

- •Null points not restricted to plane
- •Flares occur in corona
- Hence want reconnection sites in corona

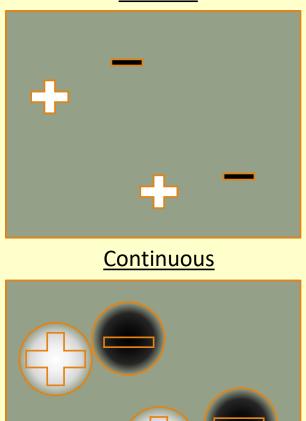


Source Types

<u>Discrete</u>



SDO/HMI – helioviewer.org

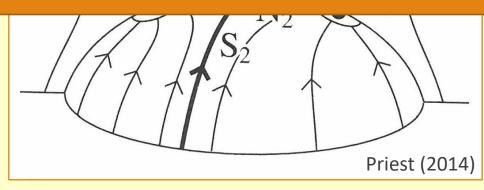


Daniel Lee

An Open Separatrix Surface

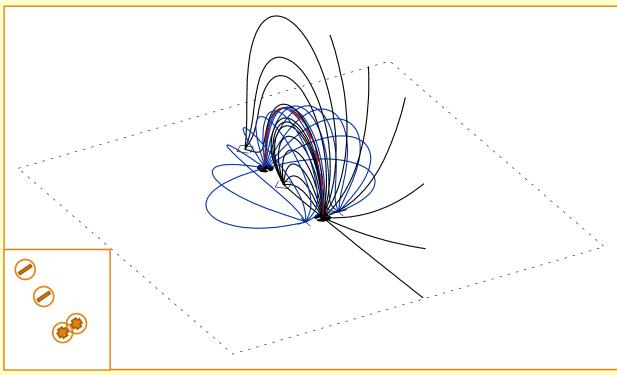
<u>Aims</u>

- Show that topology presented in Priest (2014) may not be complete picture
- Define additional features to get more complete picture of topology



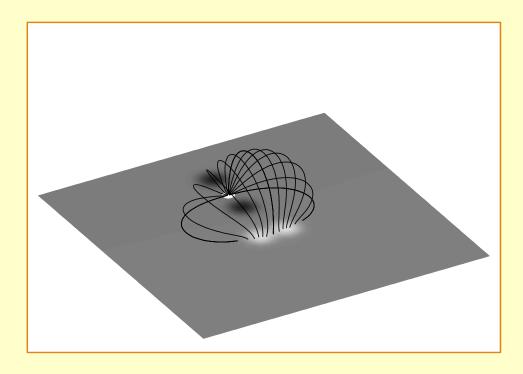
A Discrete Source Study

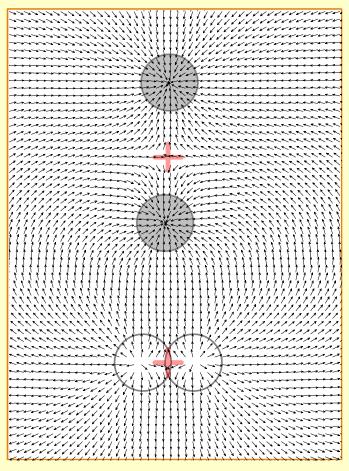
- Produce an intersected state topology with four sources
- Focus on effect moving pairs of sources close together has on topology



A Continuous Source Study

•A continuous source model of same configuration





Daniel Lee

Null-Like Features

- •We can define null-like points
 - Locations where

$$\boldsymbol{B}_{x}=\boldsymbol{B}_{y}=0$$
 , $\boldsymbol{B}_{z}\neq0$

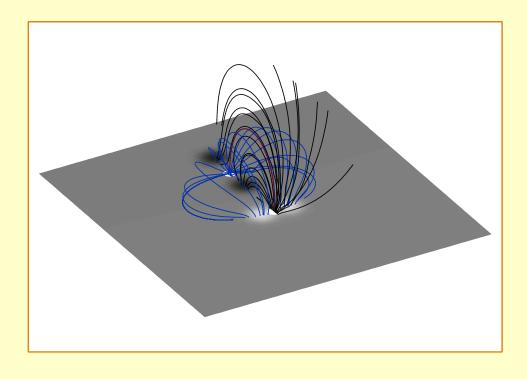
- Only on z=0 plane
- Forms an x-line structure

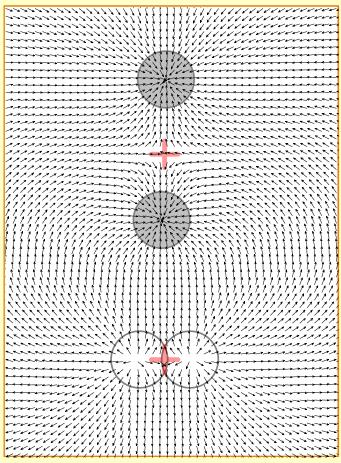
Separatrix-like surfaces generated from these points

Intersections in surfaces form separator-like field lines

A Complete Continuous Topology

• Null-like point preserves separatrix wall





Daniel Lee

Squashing Factor

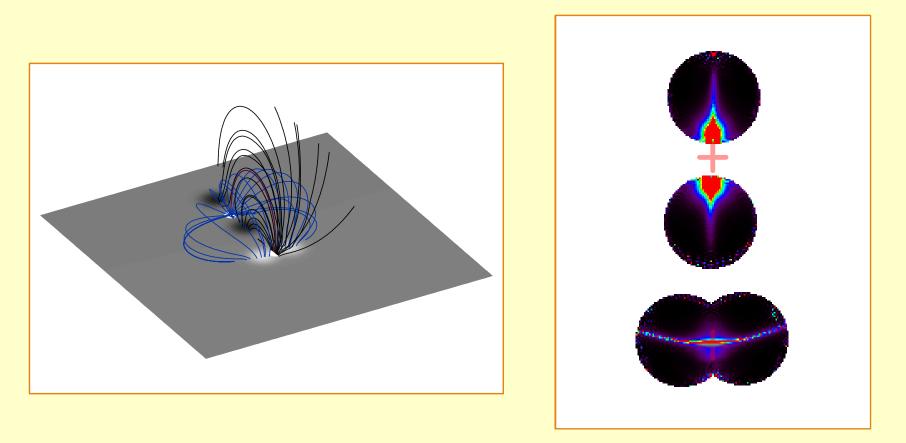
•Squashing factor, Q, provides a measure of field line divergence

•Initially used as a means of finding quasi-separatrix layers

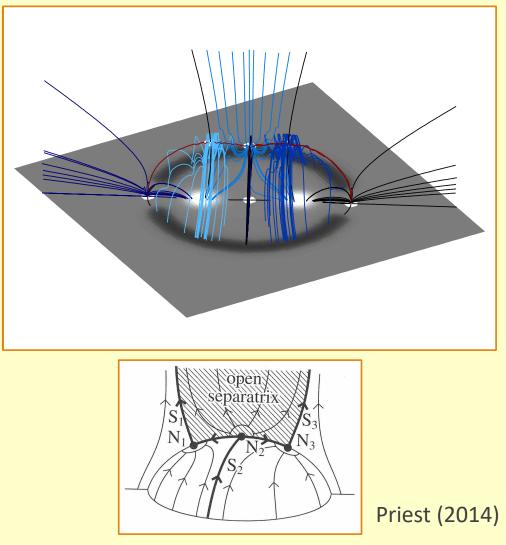
•Q>>2 implies significant divergence

Squashing Factor

•High Q indicates the presence of topological features



An Open Separatrix Surface



<u>Conclusions</u>

Consideration of null-like points is required for a complete picture of a topology

• For Priest (2014) case, inclusion of null-like points suggests open separatrix may not be as open as previously thought

Squashing Factor: Maths

We can define a mapping, Π , which maps from r_+ to r_- .

 $\bullet \Pi_{+-}: r_+ \rightarrow r_-$

Locally this mapping can be defined by the Jacobian Matrix.

$$\bullet D = \begin{pmatrix} \frac{\partial X_{-}}{\partial x_{+}} & \frac{\partial X_{-}}{\partial y_{+}} \\ \frac{\partial Y_{-}}{\partial x_{+}} & \frac{\partial Y_{-}}{\partial y_{+}} \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The determinant of the Jacobian is then used in the calculation of Q.

 $\bullet \Delta = ad - bc \equiv \det(D)$

Squashing Factor: Maths

The Squashing Factor, Q, can then be calculated for each cell in a 2D slice of the volume.

•
$$D = \begin{pmatrix} \frac{\partial X_{-}}{\partial x_{+}} & \frac{\partial X_{-}}{\partial y_{+}} \\ \frac{\partial Y_{-}}{\partial x_{+}} & \frac{\partial Y_{-}}{\partial y_{+}} \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

• $\Delta = ad - bc \equiv \det(D)$
• $N \equiv \sqrt{(a^{2} + b^{2} + c^{2} + d^{2})}$
• $Q = \frac{N^{2}}{|\Delta|}$